Phytochelatin 2, PC2 - 1 mg
- Cat.Number : AS-60791
- Manufacturer Ref. :
-
Availability :
In stock
Alternative choices
A glutathione-derived heavy metal-detoxifying peptide of higher plants consisting of 2 units of gGlu-Cys.
Specifications
Chemistry | |
Sequence one letter code |
|
---|---|
Sequence three letter code |
|
Molecular Formula |
|
Molecular Mass/ Weight |
|
Modification | |
Conjugation |
|
Quantity & Purity | |
Purity |
|
Storage & stability | |
Form |
|
Storage Conditions |
|
Activity | |
Biomarker Target | |
Research Area | |
Sub-category Research Area | |
Usage |
|
Source | |
Source / Species |
|
Codes | |
Code Nacres |
|
Downloads
You may also be interested in the following product(s)
Citations
Characterization of a high affinity phytochelatin synthase from the Cd‐utilizing marine diatom Thalassiosira pseudonana.
J Phycol . 2012 Dec 26 ; 49(1) 32 | DOI : 10.1111/jpy.12022
- T. Gupton‐Campolongo
- et al
Characterisation of the decomposition behaviour of S-nitrosoglutathione and a new class of analogues: S-Nitrosophytochelatins.
Nitric Oxide . 2008 Nov 21 ; 20(3) 157 | DOI : 10.1016/j.niox.2008.11.001
- L. Heikal
- et al
Development of surface‐engineered yeast cells displaying phytochelatin synthase and their application to cadmium biosensors by the combined use of pyrene‐excimer fluorescence.
Biotechnol Progress . 2013 Aug 28 ; 29(5) 1197 | DOI : 10.1002/btpr.1789
- H. Matsuura
- et al
Phytochelatin–metal (loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis.
Plant Cell Environ . 2013 Dec 08 ; 37(5) 1192 | DOI : 10.1111/pce.12227
- W-Y. Song
- et al
Changes in phytochelatins and their biosynthetic intermediates in red spruce (Picea rubens Sarg.) cell suspension cultures under cadmium and zinc stress.
Plant Cell. Tiss. Organ Cult . 2007 Jan 01 ; 88 201 | DOI : 10.1007/s11240-006-9192-1
- P. Thangavel
- et al
Thiol compounds induction kinetics in marine phytoplankton during and after mercury exposure.
J Haz Mat . 2012 Mar 20 ; 217-218 271 | DOI : 10.1016/j.jhazmat.2012.03.024
- Y. Wu
- W-X. Wang
Complexation of Hg with phytochelatins is important for plant Hg tolerance.
Plant Cell Environ . 2011 Mar 15 ; 34(5) 778 | DOI : 10.1111/j.1365-3040.2011.02281.x
- S. Carrasco-Gil
- et al
Fission yeast HMT1 lowers seed cadmium through phytochelatin-dependent vacuolar sequestration in Arabidopsis.
Plant Physiol . 2012 Feb 07 ; 158(4) 1779 | DOI : 10.1104/pp.111.192872
- J. Huang
- et al
Exploiting plants for glutathione (GSH) production: uncoupling GSH synthesis from cellular controls results in unprecedented GSH accumulation.
Plant Biotechnol J . 2010 Mar 11 ; 8(7) 807 | DOI : 10.1111/j.1467-7652.2010.00510.x
- V. Liedschulte
- et al
Towards an understanding of the function of the phytochelatin synthase of Schistosoma mansoni.
PLoS Neglected Tropical Dis . 2013 Jan 31 ; 7(1) e2037 | DOI : 10.1371/journal.pntd.0002037
- C. Rigouin
- et al
Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii.
Environ Pollution . 2013 May 03 ; 179 33 | DOI : 10.1016/j.envpol.2013.03.047
- P. Abboud
- KJ. Wilkinson
Reduced translocation of cadmium from roots is associated with increased production of phytochelatins and their precursors.
J Plant Physiol . 2012 Aug 22 ; 169(18) 1821 | DOI : 10.1016/j.jplph.2012.07.011
- MF. Akhter
- et al
Understanding of thiol-induced etching of luminescent gold nanoclusters.
RSC Adv . 2014 Jun 03 ; 4 26050 | DOI : 10.1039/C4RA02111H
- C-Y. Ke
- et al
The influence of pH on algal cell membrane permeability and its implications for the uptake of lipophilic metal complexes.
J Phycol . 2012 Mar 19 ; 48(2) 293 | DOI : 10.1111/j.1529-8817.2012.01126.x
- M. Lavoie
- et al
Identification of high levels of phytochelatins, glutathione and cadmium in the phloem sap of Brassica napus. A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation.
Plant J. . 2008 Jan 16 ; 54(2) 249 | DOI : 10.1111/j.1365-313X.2008.03410.x
- DG. Mendoza-Cozatl
- et al
Predicting copper toxicity with its intracellular or subcellular concentration and the thiol synthesis in a marine diatom.
Environ. Sci. Technol. . 2007 Mar 01 ; 41(5) 1777 | DOI : 10.1021/es0613963
- AJ. Miao
- W-X. Wang
SEC ICP MS and CZE ICP MS investigation of medium and high molecular weight complexes formed by cadmium ions with phytochelatins.
Anal Bioanal Chem. . 2013 Mar 23 ; 405(14) 4667 | DOI : 10.1007/s00216-013-6868-3
- A. Miszczak
- et al
Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation.
Plant Physiol. . 2016 Apr 18 ; 171(2) 1418 | DOI : 10.1104/pp.16.00372
- T. Mohan
- et al
Characterization of the phytochelatin synthase from the human parasitic nematode Ancylostoma ceylanicum.
Mol Biochem Parasitol . 2013 Jul 31 ; 191(1) | DOI : 10.1016/j.molbiopara.2013.07.003
- C. Rigouin
- et al
Selective extraction of thiol-containing peptides in seawater using Tween 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence.
J Chromatogr A . 2011 Dec 06 ; 1220 162 | DOI : 10.1016/j.chroma.2011.11.057
- C-C. Shen
- et al
Characterization of Hg-phytochelatins complexes in vines (Vitis vinifera cv Malbec) as defense mechanism against metal stress.
BioMetals . 2014 Apr 09 ; 27(3) 591 | DOI : 10.1007/s10534-014-9732-9
- AA. Spisso
- et al
Cadmium in three marine phytoplankton: accumulation, subcellular fate and thiol induction.
Aquatic Toxicol . 2009 Aug 25 ; 95(5) 99 | DOI : 10.1016/j.aquatox.2009.08.006
- M-J. Wang,
- W-X. Wang
Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch.
Environ. Exp. Botany . 2009 May 01 ; 66(2) 242 | DOI : https://doi.org/10.1016/j.envexpbot.2009.03.003
- X. Zeng
- et al
Lead accumulation and synthesis of non-protein thiolic peptides in selected clones of Melilotus alba and Melilotus officinalis.
Environ Exp Botany . 2012 May 01 ; 78 18 | DOI : 10.1016/j.envexpbot.2011.12.016
- R. Fernández
- et al
Effects of Zn on plant tolerance and non-protein thiol accumulation in Zn hyperaccumulator Arabis paniculata Franch.
Environ Exp Botany . 2011 Feb 01 ; 70(2-3) 227 | DOI : 10.1016/j.envexpbot.2010.09.009
- X-W. Zeng
- et al
Identification of in vivo nitrosylated phytochelatins in Arabidopsis thaliana cells by liquid chromatography-direct electrospray-linear ion trap-mass spectrometry.
J Chromatog . 2010 Feb 12 ; 1217(25) 4120 | DOI : 10.1016/j.chroma.2010.02.013
- L. Elviri
- et al
Separation and quantification of monothiols and phytochelatins from a wide variety of cell cultures and tissues of trees and other plants using high performance liquid chromatography.
J. Chromatogr. A . 2008 Aug 13 ; 1207(1-2) 72 | DOI : 10.1016/j.chroma.2008.08.023
- R. Minocha
- et al
Effect of cadmium on selected physiological and morphological parameters in metallicolous and non-metallicolous populations of Echium vulgare L.
Ecotoxicol Environ Safety . 2014 Apr 15 ; 104 332 | DOI : 10.1016/j.ecoenv.2014.03.019
- S. Dresler
- et al
Analysis of Plant Pb Tolerance at Realistic Submicromolar Concentrations Demonstrates the Role of Phytochelatin Synthesis for Pb Detoxification
Environ Sci Technol . 2014 May 28 ; 48 7552 | DOI : 10.1021/es405234p
- S. Fischer
- et al
Analysis of phytochelatin complexes in the lead tolerant vetiver grass [Vetiveria zizanioides (L.)] using liquid chromatography and mass spectrometry.
Environ. Pollut. . 2009 Mar 17 ; 157(7) 2173 | DOI : 10.1016/j.envpol.2009.02.014
- SS. Andra
- et al
Controlled Nitric Oxide Delivery Platform Based on S-Nitrosothiol Conjugated Interpolymer Complexes for Diabetic Wound Healing.
Mol Pharmaceutics . 2009 Dec 23 ; 7(1) 254 | DOI : https://doi.org/10.1021/mp900237f
- Y. Li
- et al
S-Nitrosophytochelatins: Investigation of the Bioactivity of an Oligopeptide Nitric Oxide Delivery System
Biomacromol . 2011 Apr 11 ; 12(6) 2103 | DOI : 10.1021/bm200159h
- L. Heikal
- et al
Biochemical and physiological changes in jack bean under mycorrhizal symbiosis growing in soil with increasing Cu concentrations.
Environ Exp Botany . 2010 Apr 01 ; 68(2) 198 | DOI : 10.1016/j.envexpbot.2009.11.009
- SAL. Andrade
- et al
Determination and characterization of cysteine, glutathione and phytochelatins (PC 2–6) in Lolium perenne L. exposed to Cd stress under ambient and elevated carbon dioxide using HPLC with fluorescence detection.
J Chromatogr B Analyt Technol Biomed Life Sci. . 2011 Apr 22 ; 879(20) 1717 | DOI : 10.1016/j.jchromb.2011.04.016
- XH. Ju
- et al
Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa(Chlorophyta).
Plant Physiol Biochem . 2011 Oct 11 ; 51 102 | DOI : 10.1016/j.plaphy.2011.10.007
- M. Mellado
- et al